Category Archives: Homebrew

Home construction, QRP, solar power 8 months on

When I came back to amateur radio in March 2018, I set myself some aims, more aspirations really.  I said that I wanted the station to be QRP, all homebrew and solar powered.

I have always enjoyed making stuff and now I have finally retired I have a lot of time to do just that. Second, I have previously thrown money at the hobby, got on the air and become bored.

QRP? Life is too short say the kilowatt cynics. Over the years I have enjoyed using a lot of small, home made radios with spectacular results. It takes more effort to winkle a signal out of the noise, but the rewards are bigger. Like many things in life it takes effort and patience to get results but the reward are higher.

uBITX

As the solar power I am trying to reduce my carbon footprint as I fear we are on the brink of a climate catastrophe.  You may not agree but I would urge you to read the evidence, from climate scientists, not newspaper articles, who agree that there is a big problem. Besides saving energy in the home saves money!

80w folding solar panels

So, 8 months on I am back on the air with a uBITX with the mods to reduce spurious emission and harmonics. Next is the AGC board. Using a LiPo battery I can get near 20W output but that is trimmed down to 5W. I also have a 20M QSX and am eagerly awaiting the launch of the multiband QSX.

20m QCX

The auto antenna tuner is nearly finished but in the mean time I have a 9:1 balun at the bottom of the antenna and an L match at the radio end. I can get below 1.5:1 from 106m to 10m which is fine for now.

The only thing to sort out now is a more permanent solar panel battery charging facility. I have the gear from ‘the van’ but want something more permanent.

80M DX on the uBITX

This is a recording of W1MBB on 3.798Mhz at 0754 this morning. My antenna is a long wire strung between two trees with a homemade tuner. I also heard a ZL this morning.

 

So, what does this prove? That the uBITX receiver works well although I must add the AGC board! That there is DX out there if you know where to look. That amateur radio need not cost a lot. And, most of all, there is nothing to beat the kick of building a radio and using it on the air.

I know I could never work him on the uBITX but I also know that using higher bands it is perfectly possible to work across the pond on 2W of CW.

Low cost frequency standard

I have been looking for a low cost frequency standard for a while to replace one I once had about 10 years ago. The only way to do it then was to build a GPS locked oscillator. I chose the extreme overkill route and locked a doubtful rubidium standard to GPS. It worked for a while and then the rubidium kit stopped working.

The next solution was to lock a temperature-controlled 10Mhz crystal oscillator. It worked well enough as along as it was left on all the time. Recently I have been looking for a cheaper and less complex way of providing a 10Mhz standard signal for test equipment and radios.

Things have moved on and the GPS modules that used to be relatively cheaply available on ebay are no longer there. Ditto oven-controlled oscillators. Then I found the ideal solution on the QRP Labs web site; a “ProgRock – triple GPS-disciplined programmable crystal” which is basically a Si5351A chip programmed for a single frequency. It can be GPS locked via a 1PPs signal from a GPS receiver, the “QLG1 GPS Receiver kit.” An order was placed.

The kits arrived, and I spent a few hours yesterday building them. As usual with QRP Labs kits they all worked first time. The first check was my £17 ebay counter, a Racal-Dana 9918. It was 5.2Hz low at 10Mhz! I could try adjusting the internal 10Mhz oscillator but it might take a while to get it to read 10,000,000!

The better option is to complete the project by building a small distribution amplifier which will give 3, 10Mhz sine wave outputs from the ProgRock and use one of them as an external timebase for the counter.

The PrgRock with scope probe attached

GPS board with patch antenna.

The kits, parts for the distribution amp and a case will cost around £35 in total. That is probably about one tenth the cost of the previous project!

Is this all overkill? Well yes and no. Modern transceivers are accurate but when you build your own you never know. Also, the move to VHF, UHF and microwave for satellites means I want to be sure that the frequencies are correct. This crucial when multiplying up free running crystal oscillators as any error will also be multiplied.

The usual disclaimer, I have no connection with QRP Labs other than being a satisfied customer. This review/article was not solicited by them and they had no knowledge I was doing it.

 

Why home construction?

I am often asked why I bother with home construction. Why make stuff when it is so easy to go out and buy it? The questioners sometimes go as far as asking why I waste my time.

There are lots of reasons; it is something I have always done, it saves a lot of money, you know your gear well so can repair it and most of all I learn something, sometimes the hard way!

All of that is summed up in this quote I found today:

“The excitement of learning separates youth from old age. As long as you are learning you’re not old” Rosalyn Sussman

First test of the remote ATU. The control box is the next job.

I am now eight months in to my aim to build a totally homebrew station. I am at the point of having some working transceivers, power supplies, an antenna analyser and a long wire antenna. The remote tuner is almost done but is proving troublesome. By the end of the year it will all be sorted!

The SDRPlay RSP1A-a momentary lapse

At the RSGB Convention last week I broke my pledge to have a 100% homebrew station. There was a demonstration of an SDRPlay RSP1A right next to the Martin Lynch stand with a small pile of boxes on sale! Not only is it a wide band receiver there is also spectrum analyser software available and all this for just less than £90.

The justification was simple; I build transmitters and need to be able to check the harmonics and other spurious signals to conform to licence regulations. It does not have to be an absolute measurement just the level of the spurious emissions compared to the carrier. And spectrum analysers are expensive.

Then there is the imminent launch of Es’hail, so I need a 10Ghz receiver to listen to it. The conscience clincher was a demo by the microwave group of a modern satellite TV LNA connected to an SDR receiver. Simple. Another reason to get the RSP1A.

And then there is 630m. You get the message, justification for the temptation and I must confess I had a moment of weakness and succumbed. I am trying to atone by finishing the remote tuner.

Not had much time to play but what I have seen is impressive. SDR receivers are incredible, amazing etc. This morning I listened at the top end of 80m for the transatlantic DX spot, 3.798Mhz and was astonished to hear AA8KB at 5-7 on the meter. This is on an untuned inverted L sloper with the high end at about 10m and low end at 6m.

This is a short recording of AA8KB holding the recorder close the the PC speaker.

I can only confess to this lapse and argue that this was a one-off purchase of an extremely useful piece of kit!

The usual disclaimer, no connection with the company and these are my own views.

Update a half hour later. Just gone back to the SDRPlay and found the RF gain was almost turned to minimum.

Practical Wireless February 1960 – pure nostalgia

At the Newark Hamfest last month there were old copies of Practical Wireless magazine going for £4 each. Having been a reader of the mag since about that time I could not resist.

It is more often the adverts that get me. I remember spending hours drooling over all the ex WWII radio equipment and wishing I had the money to buy some. It did happen a few years later when I was allowed a sol trip to London for the first time. It was a steam train of course.

I was looking for London Central radio Stores in Lisle Street, Soho and did what all kids were told to do and asked a policeman for directions. He looked down on me very suspiciously and asked “now what do you want to go there for lad”. I explained it was for the radio shops and he looked even more suspicious but eventually told me which way to go. I found the shop which obviously had other tenants upstairs who were eager to divert me but the radios were far more interesting!

Here are some adverts and nice little VFO project. I like the sub heading “frequency stability is always a valuable feature”.

PW-1960-002
Orientation: 1
« 1 of 5 »

There are many more copies available online at this site but you do not get the smell of old magazines.

Next project-GPS locked 10Mhz source

Work is progressing well on the remote antenna tuner, more pics to follow soon. I am already thinking of the next project and decided I need an accurate 10Mhz frequency source for my counter and other stuff. In the past I have used a surplus rubidium standard and when that popped a GPS locked crystal oscillator.

That was over 10 years ago and things have changed. Used Racal Rubidium boxes are on ebay for between, £550 – £811. Bare bones Rubidium standards which need control circuits are priced at £157. These are often units removed from cell phone installations with an unknown lifespan remaining.

There are also lots of ready built Chinese boxes using 1PPS GPS sync for around £100 but in the spirit of making everything myself either from kits or self sourced components I decided to make my own.

QRP Labs have the QLG1 GPS Receiver kit and the ProgRock kit which makes a very cost effective combination. I have no connection with them except being a satisfied customer. Adding a box, power supply and other bits and pieces the estimated the overall cost will be below £40. The kits are ordered and I will share the build here soon.

See my build of a QRP Labs 20m QCX transceiver here

An Extron ADA4 300MX video distribution amplifier can make a cheap way of distributing the 10Mhz signal around the shack/workshop. See this page.

The radio shack, workshop man cave

This is where I spend a lot of time. It is part of an old converted barn that was a coaching stop between Manchester and Sheffield. It built into a bank with walls 2-3 feet thick which makes it very quiet and cool all year round.

Next project on the bench will be a remote antenna tuner using a couple of Arduinos with an RS485 link. See this F4GOH web page


The construction area. Note the solder fume extract pipe.


The fume extractor is an inline ventilation fan bought from a hydroponics shop. It has a variable speed control and works very well.


The SMD rework area. The heated tweezers will soon be joined by a hot air gun.

The mechanical workshop!

 

Pure 160m

I could not resist this! A RAT5 160m AM receiver in a Pure Evoke DAB radio case. It came into a repair cafe where I volunteer. It had been well and truly zapped when the PSU went faulty. I asked if I could have it for the bits. The case is a bit battered, but I am sure it will be fine.

The RX is built and working and there is lots of room for the TX, the FAT 5. Both come from
www.shortwaveradio.co.uk/projects.htm I have no connection other than buying the kits.

More to come.

Life is too short….

Last week I heard a QSO on 80M SSB where each op was using 400W and each gave the other 5-9+20db One op said ” I always use QRO, life is too short for QRP”. Reducing their power to ~6w would have resulted in report of 5-9+2db. Why waste so much power?

Interestingly I found this today on the North American QRP CW club web site; “According to Rich Arland, K7YHA (now K7SZ), in World Radio magazine (Feb. 1990, year 19, issue 89, pp. 46-47) the long-distance low power record is held by KL7YU and W7BVV using one micro-watt over a distance of 1,650 mile 10-meter path between Alaska and Oregon in 1970. This is the equivalent of 1.6 billion miles per watt.”

That is why I use CW with a 5W power output limit and often use much less. It takes more effort to work some stations and more skill and patience but the rewards are well worth it especially when using homebrew gear.

SW20